Categories: Science

Astronomers find rare star system that will lead to gold-producing explosion

Astronomers at the National Science Foundation’s NOIRLab made the first confirmed detection of a star system that will one day form a kilonova, an ultra-powerful and gold-producing explosion created by merging neutron stars. 

Researchers said on Tuesday that they used data from the SMARTS 1.5-meter Telescope at Cerro Tololo Inter-American Observatory in Chile to uncover the first example of the phenomenally rare type of binary star system. The findings are published in the journal Nature. 

The arrangement, known as CPD-29 2176, is so astonishingly rare that only about 10 such systems are believed to exist in the Milky Way galaxy. 

CPD-29 2176, is located about 11,400 light-years from Earth and was first identified by NASA’s Neil Gehrels Swift Observatory. 

VIDEO SHOWS ‘MYSTERIOUS’ WHIRLPOOL SPIRAL FLYING OVER HAWAII SKY

The SMARTS 1.5m telescope in Chile
(Rodrigo Hinojosa  )

Upon further observation with the telescope, the scientists were able to deduce the orbital characteristics and types of stars that make up this system: a neutron star that was created by an ultra-stripped supernova and a closely orbiting massive star that is in the process of becoming an ultra-stripped supernova itself.

An ultra-stripped supernova is the end-of-life explosion of a massive star that has had much of its outer atmosphere stripped away by a companion star. 

An artist’s impression of the first confirmed detection of a star system that will one day form a kilonova – the ultra-powerful, gold-producing explosion created by merging neutron stars.
(NOIRLab)

MORE THAN 3 BILLION STAR, GALAXIES ARE CAPTURED IN A MASSIVE NEW SURVEY

“The current neutron star would have to form without ejecting its companion from the system. An ultra-stripped supernova is the best explanation for why these companion stars are in such a tight orbit,” the paper’s lead author, Noel Richardson of Embry-Riddle Aeronautical University, said in a statement. “To one day create a kilonova, the other star would also need to explode as an ultra-stripped supernova so the two neutron stars could eventually collide and merge.”

This long-exposure photograph shows the motion of stars during the night above the Blanco 4-meter telescope (left) and the SMARTS 1.5-meter telescope (right) at Cerro Tololo Inter-American Observatory in Chile, a program of the NSF’s National Optical-Infrared Astronomy Research Laboratory.
(Credit: CTIO//NOIRLab/NSF/AURA/D. Munizaga)

CLICK HERE TO GET THE FOX NEWS APP

It will take at least a million years for the massive star to end its life as a titanic supernova explosion and leave behind a second neutron star. The authors said the stellar remnant and the pre-existing neutron star will need to draw together before merging and noted that the resulting kilonova explosion will produce much more powerful gravitational waves and leave behind a large amount of heavy elements, including silver and gold.

Share

Recent Posts

Columbia University data breach hits 870,000 people

Columbia University recently confirmed a major cyberattack that compromised personal, financial and health-related information tied…

7 hours ago

New AI apps help rental drivers avoid fake damage fees

Rental car drivers are now turning to artificial intelligence to protect themselves from surprise damage…

9 hours ago

Fox News AI Newsletter: Melania Trump puts AI front and center

IN TODAY’S NEWSLETTER: - Google CEO, major tech leaders join first lady Melania Trump at…

12 hours ago

Delivery giant’s data breach exposes 40,000 personal records

Thousands of people have had their sensitive personal information exposed in a data breach at…

12 hours ago

Woman gets engaged to her AI chatbot boyfriend

Technology keeps changing the way we work, connect and even form relationships. Now it is…

13 hours ago

Notorious people search site returns after massive breach

Over a year ago, National Public Data (NPD) made headlines for one of the largest…

1 day ago